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Abstract—There is carried out a study of the alteration in surface heat transfer and in the profiles of
the flow variables associated with several descriptions of the transport properties of a dissociating gas.
A boundary layer of the similar type is considered; a reasonably accurate description of the viscosity,
conductivity and diffusivity of a mixture of atoms and molecules is employed along with several
approximate descriptions which have been employed in the past. Numerical examples corresponding
to high altitude hypersonic flight are considered and indicate that alterations of heat transfer of up to
60 per cent and of the profiles of possible significance can occur depending on the description of the

transport properties employed.

NOMENCLATURE

Ai, By, Dy,

Ay, By, Dy, E,

Cp,

NO’

constants in the transport
properties for the i-th species;
constants of integration in the
k-th iteration;

coefficient of specific heat at
constant pressure;
normalized product of mass-
density and viscosity, pp/pee;
binary diffusion coefficient;
stream function, f” = u/u,;
Blasius stream function;
normalized stagnation enthal-
DY, hs/hs,e;

shear function, cf. equation
15);

static enthalpy;

index, j =0 for two-dimen-
sional, j =1 for axisymme-
tric;

specific reaction constant of
the body surface;

external stream parameter,
u2[2hs,q;

Avogardro’s number;
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Nhs

N,
D
qw,

heat-transfer parameter, cf.
equation (14);

number of species;

pressure;

heat transfer at the body
surface;

collision cross-section;
cylindrical co-ordinate of the
body;

universal gas constant;
similarity variable, cf. equa-
tion (6);

Schmidt number, 1/ p2;
temperature;

velocity component in x-wise
direction;

velocity component in x-wise
direction;

molecular weight;

co-ordinate along the body
surface;

mole fraction;

co-ordinate normal to the
body surface;

normalized mass fraction of
atoms aja,;

mass fraction of atoms;
parameter cf. equation (8);
constant in enthalpy-tempera-
ture relation, cf. equation (7);
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¢, surface catalyticity cf. equa-
tion (12);

1, similarity variable, cf. equa-
tion (5);

0, normalized temperature, T/7T;

A, coefficient of heat conduc-
tivity;

iy viscosity coefficient ;

I3 mass density;

a, Prandtl number.

Subscripts

A, atoms;

e, conditions external to the
boundary layer;

k, iteration index ;

M, molecules;

S, stagnation conditions;

s, e, stagnation conditions external

to the boundary layer;
w, conditions at the wall or
body surface.

1. INTRODUCTION

THE HEAT transfer to extended surfaces of hyper-
sonic vehicles in high altitude flight depends on
surface recombination of the dissociated gas. At
sufficiently high altitudes and sufficiently close
to a sharp leading edge gas phase reactions can
be neglected so that heterogeneous reactions
become dominant. Thus there has in recent
years been considerable interest devoted to
boundary-layer flows with surface reactions
[1-6]. Apparently in all of these studies the
transport properties, which pertain to the
dissociated gas mixture and which enter into
the description of the flow, have been represented
in a simple fashion. In particular alt have assumed
that the pp ratio and the Prandtl and Schmidt
numbers to be constant. With respect to the
main item of technical interest, namely, the
heat transfer, this simplicity is stated to be
justified on the grounds of insensitivity thereof
to the transport properties, it being generally
assumed that only a 5 to 10 per cent error in
heat-transfer results from the assumed transport
descriptions.

Accordingly, it is considered of interest to
analyse some flows which involve surface re-
actions and which are essentially simple in all

respects except for their transport properties,
and to evaluate the effects thereof on not only
the surface heat transfer but the boundary-layer
profiles as well. Thus the constant pressure flow
of a simple dissociating gas with constant sur-
face catalyticity is treated; nitrogen is explicitly
considered in the determination of the transport
and thermodynamic properties, which are
described with reasonable accuracy. Flow con-
ditions corresponding to the flight of a body with
nose bluntness at 250000 ft with velocities
corresponding to 20 and 26 000 ft/s are assumed
in the numerical analysis.

2. BASIC EQUATIONS

Consider the laminar boundary layer of a
dissociating gas under conditions wherein gas
phase reactions may be neglected. Assume that
the flow external to the boundary layer is uni-
form and involves a fixed mass fraction of
atoms a.. Now the heterogeneous surface re-
action which causes the non-uniformity in the
degree of dissociation is generally considered to
be of first order so that at the wall, i.e. at the
surface y = 0

Ay ~a

(D

The proportionality factor in this relation is a
function of the specific reaction constant &, and
of the diffusion coefficient at the wall conditions,
and is thus realistically to be considered a
function of the streamwise co-ordinate x. Thus,
accurate treatment of the boundary layer with
heterogeneous reactions involves a non-similar
boundary layer, i.e. one which cannot be
described by ordinary differential equations in
terms of a variable 5y = %(x, y). However, it is
frequently assumed that the main features of the
flow are retained if a convenient variation with
respect to x of this proportionality factor is
assumed; in this case the boundary layer is
either strictly similar or of a non-similar type
amenable to analysis.

For the purposes of examining the effect of a
more accurate description of the transport
properties of a dissociating gas on the surface
heat transfer and on the flow profiles, it is
considered sufficient to employ the simplifica-
tion associated with similar flows. Accordingly,
the describing equations for the distributions of
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velocity, stagnation enthalpy, and atom mass
fraction are conveniently written as

[CfT+4"=0 @

(Clo)g') + 12" + 2 [(Clo)(1 — o) ff"] +
{C(S71 — o Nael(ha — hu)/hs ]2’} =0 (3)

(CIS)Z' + fZ' =0 @
where

( )' = d/d‘q, g = hs/hs,e, hs = (u2/2)
+ aha + (1 — o)y, Z = afae, it = (U2[2hs,e);

where the independent variable is the well-
known Levy-Lees variable [7]

7= poter 29) | (plp) dy =105, ) (9)

and where the streamwise transformed variable
§ = §(x) is for this case

jzpeﬂeugjrzjdx (6)
0

The quantities /4 and har are the enthalpies per
unit mass of the atoms and molecules, re-
spectively. Finally, the transport properties of the
mixture are contained in C = pu/pepe, in the
Prandtl number ¢ == ucp/A, and in the Schmidt
number S, = p/pZ where 2 is the atom-
molecule diffusion coefficient.

As will be seen below, the transport properties
are functions of composition and temperature,
i.e. of @ and 7, so it is essential for the present
purposes to relate the prime variables £, g, and
Z to the temperature. This may be done as
follows: it is reasonable to assume that the
coefficient of specific heat at constant pressure
per unit mass for both the atoms and molecules
is the same and constant over the temperature
range of interest. Then

hA.’:'AA+CpT

™
hM ~ AM + CpT

and the definition of g leads to
0 =g — Mmf"? — Z8 — (Am/hs,)l/(cpTefhs,e) (8)
where

0 = T|T,, 8 = (ao/hs,e)(da — Ap1).

It will be convenient for the specification of the
boundary conditions to write equation (8) as

8w = 9w(CpTe/hs,e) + Zyd + Adu (9)

Now the boundary conditions for equations
(2)(4) are: at yp = 0,

f=f =0

6 = 6, given constant,* (10)
Z' — {Z = 0, { = given constant
and at 5 - oo,
ff=g=Z=1 (11)

The parameter { is the so-called surface
catalyticity, which is exactly expressible for first
order reactions as

{ = kac,w(zf)é/,U—w ug rj (12)

It is to be noted from equation (12) that the
requirement for { = constant for the flows
under consideration involves a special variation
of ky with §, e.g. kyy ~ 5§ if j = 0.

Of particular interest in the flows in question
is the heat transfer to the surface; it is due to
thermal conduction and to diffusion and is
expressed as

quw =[ATy + pD (ha —hm) aylw.  (13)
In terms of the prime variables and of the
approximations employed here, equation (13)

yields the following form which is convenient for
further comparisons:}

N, = [QW(ZS')é/Pe,“e Ue rjhs,e] = (Cw/aw) .
{8, — Z, 81 — (pPojw)ul}  (14)

3. METHOD OF SOLUTION WITH ACCURATE
TRANSPORT PROPERTIES

If the transport properties are explicitly

represented in terms of 6 and Z, then equations

(2)~(4) can be put in the form of seven first order,

* The specification of 8, rather than g, is preferable
for this study and for applications.

1 Note that the heat-transfer parameter N as defined
here permits the heat transfer g, to be computed from
free-stream conditions alone. Thus, alterations in wall
conditions, e.g. in gw, Cw, etc. for a given 8, but for
various descriptions of the transport phenomena do not
obscure the effect of such descriptions on the heat
transfer.
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non-linear, ordinary differential equations, whose
solution by standard numerical techniques could
be carried out without difficulty, except for the
split nature of the boundary conditions. How-
ever, it is necessary to carry out the integration
from n = O with guesses as to f,,, g, and Z,
and to improve successively these guesses so that
asm—~ o, [’ = g=Z = 1. Thus each solution
involves a search in a three-space of f,,, g.,, and
Zw.

It seems preferable to employ an iteration
method of solution related to that previously
employed in simpler problems |8, 91.* Consider
first equation (2); let G = Cf"' so that

G+ (fIC)G =0 (13)

Now consider an iterative method of solution
such that

Gy + (fIC)k-1Gx =0

i.e. so that (f/C) is assumed known from the
previous iteration. Integration twice with f, = 0
leads to

fi= A I Cityexp [ T(/IC)s-1 dn] b (16)

where Ay is a constant of integration determined
so that f,(co) = 1 for each iterate. Thus

< 77, rH r
A = { [ Gty exp [— [ (f/C)r-1dn"Tdn"} 1
1] 0 ( l 7)

A final integration gives
N no ’
Je =1y dn (18)
0

The next iteration cannot, of course, be carried
out at this point in the analysis since the quanti-

ties required to compute Cy, i.e. 8 and Zj, are
not available.

* In both references 8 and 9 only the momentum
equation with C = 1 is considered. The details of the
method employed here follow more closely that given in
reference 9, although the convergence of the method of
reference 8 is proven therein. Proof of convergence of
the method employed here has not been attempted. It is
also noted that several authors in the past have used
procedures for treating the two-point boundary value
problem based on formal quadrature; indeed, Dr. W. J.
Rae has pointed out in a private communication to the
second author that R. F. Probstein {10] has used a pro-
cedure similar to that of the present report for a simpli-
fied energy equation.

It is convenient to consider next the equation
of atom concentration, i.e. equation (4); let
Q = (C/Sy)Z’ and consider an iterative solution
so thatt

Qr + (Sef1C)-1Qk =
Integration yields
Z = B | {(Se/Chis exp— T (Sef [C)ir dn’']}
0 0
dy 4+ Dr  (20)

where By and Dy, are selected so that each iterate
satisfies the boundary conditions at » == 0, co.
There are obtained

(19)

By =

(21
[(S(‘,‘/C)w]k'"’l '+_ E r{ } d"7’

b USIChulis
I 1
(Se/Chuli + 2 T (o

Note that Z, r = Dy and thus that g, may
at this point in one cycle of the iteration be
considered known from equation (9).

A similar treatment of the energy equation,
equation (3), can be carried out; let

R = (Clo)g’ (23)

so the equation (3) becomes, according to the
iterative point of view,

R, + (of/C)k-1 Rk = Hi

¢
&£
0

(22)

(24)
where
H =2m(Clo) (1 — o)f'f"" 4+ Clo7t — S;V)a,dZ’.
Integration followed by rearrangement yields
Ry in a convenient form;} namely

7

Ry = Hy-1 — exp [~ [ (of/C)g-1d7']

0

{F Hior (0f 10t @5)

exp [ | (0f/C)i— ") dn'} — Ex

+ Note that in equation (19) and in the subsequent
steps of one iteration cycle, the most recent iterates can
be used; e.g. in equation (19), fx can be used.

1 Note that throughout this analysis efforts are made to
avoid the necessity of differentiating the transport
properties; this always appears to be possible.



THE EFFECT OF VARIABLE TRANSPORT PROPERTIES 11

A final integration yields
gk = guk + | (0/C)k-1 {Hi
0
—exp [ T (of/Chi-1 ]
(Huw,k-1 + }Hk—-l (of|Ck—
o r (26)
exp [ g (of|C)x—1 dn’""] dn"")} dv/’

+ Ek :{](o/C)k—l

exp[— "g'(of/C)k-l dn”] dyf

J

Blasius function [11], denoted here as f; and the
solutions for Z and g may be obtained directly
from equations (9), (20)-(22), (26) and (27) with
the iteration indices k and k& — 1 removed. There
are obtained

1+ ¢ I (f o1 fo )5 dyf
L LTI e dy

0

Z= (28)

Zw=1[l+¢ jf(f;'/féfw)g« 1t (29)

g =guw+2m(l —HfH2) — 5 g (folf ;,'w)E[:iI’fof of o (fo1f o)™ A"’} +

Ey & I (fJ1f o) dn' + (1 — (5/SN{Z — Zw) — Z,L:I (f3 1S o) dn’
- ;J)" (a1 1’(f;'/f;fw)“5fo Z' dy"] dn'} (30)
The boundary condition at % — oo determines E, =
Ey, noting again that gy, x is known; thus o
(I — guw) — 2m(5 — DAl - zt)(fo/fo,w)"[]dn'}
— gw,k) — | (0/C)p- dn’ T o
g 8 O U #1007 d
[ (0/Chi-1 exp [— § (of/Chi-1 dn"] dy 31

0 0

@7)

After a set of iterate functions fx, Z; and
gx are computed as indicated above, the iterate
function 6y can be computed from equation (8),
new iterates for C, o, S, can be computed, and a
new cycle begun.

4. SOLUTIONS WITH SIMPLE TRANSPORT
PROPERTIES

It will be interest for the purposes of the
present study to have available the solution to
equations (2)—(4) subject to the boundary con-
ditions of equation (10) with the simplified
descriptions of the transport properties usually
applied. Thus consider first the approximations
C =1, and o, S, equal to constants &, S,. Then
the solution to equation (2) is the well-known

where equations (9) and (29) give gu.

An alternate approximation for the transport
properties involves S;= S, =c=3&=1 but
with C variable. In this case equations (3) and
(4) and the boundary conditions thereon are
satisfied by Crocco-type algebraic relations
among f, g and Z. It is easy to show that

g=gw+ (1 — gu)f (32)
Z=(f, +Nfu+D (33)

In equations (32) and (33) f’ and f, must be
obtained from the solution of equation (2) with,
in general, C a variable. Note that in this case C
can be represented as a function of f alone by
use of equations (8), (32) and (33), and that the
iteration method of solution leading to equation
(16) can be applied for the solution of equation
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(2) alone. Finally, g, is given by equation (9)
with 8, specified and with Z, obtained from
equation (33).

5. TRANSPORT PROPERTIES FOR NUMERICAL
EXAMPLES

To make the comparison between the solutions
with accurate and with simple transport proper-
ties, it is assumed here that the dissociating
gas is nitrogen and that the molecules and atoms
behave as rigid spheres with constant collision
cross-sections. In addition, the mixture proper-
ties have been computed according to the
approximate equations which are due to Fay
[12] but which are similar to those employed in
the past.

From the equation of state for a binary
mixture

&— 1+ae
Pe 1+an

6-1, pe = (pW1/RoTe) (1 4 ag)!
(34)

From Fay, in general, for a mixture of N
species

~

X. .
p= > i (35)
= X X Gix
k=1
where
Git =1
G = 1385us Ro Tlp Wi Dix, i # k) (36)

When equation (35) and (36) are applied to a
binary mixture resulting from dissociation,
then i, k =1, 2 and

D = @12 = BT3/2 RO/P Wl
B = (3/32) (12 R, Wy m)V2|N, Q12 (37)

where Q12 is the collision cross-section for
atoms and molecules, and N, is Avogardro’s
number. For a dissociating gas Q12 may be
computed according to the combination rule

Q12 = 7 o3y, = m (o1 + 02)?/4 (38)

where oy and o2 are the effective molecular
diameters of atoms and molecules, respectively,
taken here to be constants. Moreover, in
accordance with the aforementioned approxima-

tions for the properties of the molecules and
atoms,

m:AiT"il‘=1,2 (39)
where

A = 2°7(10-5)x(W1)}/ Q11, g/em s

Az = 2-7(10-5)7(2W1)*/ Q22, g/cm s
provided the cross sections are expressed in the
units cm2. Thus, from equation (35)

. A1
p=T {1 1385411 — a2)]2 BagZ] T
As
I+ 1-385[42e.Z/B(1

1
Qg Z)] J (40)

Equation (40) applied to external conditions, i.e.
with T'=17, Z =1, determines p,. Thus
equations (34) and (40) permit

C= C(69 Z) = C(f,, 4 Z)

to be obtained.

In a similar manner, after Fay, the conduc-
tivity of a mixture can be computed* and thus
the Prandtl and Schmidt numbers can be
expressed in terms of T [and thus through
equations (18) in terms of g, f and Z] and of Z.
The following thermodynamic and molecular
parameters have been employed in the nu-
merical examples:

o1 = 2-2(10-8) cm 1
oz == 3:0(10-8) cm

44 = 8-0(10%) cal/g

Ay = — 1-8(1092) cal/g

¢p = 0-32 cal/g degK

Wi = 14 g/mol

@41

Where possible the thermodynamic and trans-
port properties of dissociated nitrogen, as
predicted by the equations and parameters
presented here, have been compared with more
accurate calculations; the present analysis has
been found to yield satisfactory results except
for a mixture which is essentially undissociated,

* An approximate Eucken correction consistent with
the assumption of fully excited vibrational energy for the
molecular species has been employed.
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i.e. a, > 0 and which is not of interest to the
present study.

6. FLOW CONDITIONS AND COMPUTING PRO-
CEDURES FOR NUMERICAL EXAMPLES

To examine the influence of the transport
properties on the boundary layer under con-
sideration and under conditions of high speed
flight of possible interest, the properties external
to the boundary layer on a blunted slab are
estimated as follows: an undisturbed stream is
characterized by a static pressure, taken to be
2(10-5) atm so that it corresponds to an altitude
of roughly 250000 ft, and by a velocity. Then,
employing strong shock approximations and the
assumption of equilibrium dissociation behind
the bow shock, the state of the dissociated gas at
the blunt nose is readily found. It is then
assumed that an expansion cerresponding to
frozen chemistry back to ambient pressure
occurs so that a remains constant equal to o,
and so that #, (and thus /) and T, can be
determined. The resulting values for the ex-
ternal conditions are rounded off to reflect their
illustrative nature. It is noted that the radius of
the nose is here being considered sufficiently
large and the distance down-stream of the nose
sufficiently small so that the characteristics of
the flow external to the boundary layer are
determined by the flow which has passed
through the normal shock at the nose. Two
flight velocities corresponding to 20 and
26 000 ft/s have been considered.

The iteration solution as described above was
programmed for the IBM 650 of the Poly-
technic Institute of Brooklyn, employing Simp-
son’s rule for the quadratures with an incre-
ment in » of 0-1. The infinity conditions were
imposed at n = 6. The initial distributions for
£, C, 0, and S, were computed from the Crocco-
type relations, i.e. from equations (32) and (33)
so that the Blasius function was the only input
function. Convergence of the iteration was
considered satisfactory when the functions f, g,
and Z and their significant derivatives differed
in two successive iterations by less than 10-3
at several 7 points, including 5 = 0, i.e. the
wall. It was found that six to eight iterations,
taking roughly 20 to 25 min, was required to

meet this criterion, which might be considered
excessively severe for present purposes.

7. RESULTS AND DISCUSSION

The principal results of the nine cases studied
are presented in Table 1.* Listed initially are the
values of ae, 1, Te, Ty and { characterizing the
flow and surface conditions. Listed subse-
quently are the parameters gw, g, f. > Z,, and
N, characterizing the solutions and the para-
meters Cy, S¢,w, 0w characterizing the transport
properties at the wall; this listing is given for the
solutions obtained from accurate transport
properties and from various approximate
descriptions thereof.

Presented in Fig. 1-5 are representative pro-
files obtained for the cases whose wall values are
listed in Table 1. They have been selected to

40—

APPROXIATE TRANSPORT
35 —— C(Eo=5,=|
———— C variable, o=5,=I
2.0l- ACCURATE TRANSPORT
——

5 —-— (g-¢,)/0-g,)

,(" e (222 / f!
20 ;
7
7
5 / %

P
0! / 7

MY

H I H
7% i : 1

/ ] i
i ‘ J
% "0z 64 06 08 10

Profiles for case 2: a¢= 075, m = 0-189,
Te = 400°K, T, = 1000°K, { = 0-2.

Fie. 1.

indicate the main effects of the description of the
transport properties on the flow profiles. It is
noted that the profiles have been presented in
terms of the parameters which lead to the Blasivs
function in the special case C =6 =S, =1;
this presentation tends to reduce the effect of

* Note that cases 1-5 evidently pertain to the higher
of the two flight velocities considered.

t Note that Z, can be computed from Z,’ and ¢
according to equation (10).
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35-
—~——— C variable, o=5 =1
3.0 ACCURATE TRANSPORT _|__

CozSsl |

——— ‘
5 —-— (GG -g), —
5 :
72 ' (ZZMN-2,) )
/8
20- ‘ %/ \
. ‘l_ //
! | P !
| 0
05— ‘

L]

o] 02 04 06 08 0

FiG. 2. Profiles for case 3: a¢= 075, m =
Te = 400°K, ’Tw = 3OOOK, C = 1.
4‘0‘” T T T T TYTT TR
APPROXIMATE TRANSPORT l—
35 Czo0=5c=l *__#,

———= ( varigble, c=5,=I
30. ACCURATE TRANSPORTA‘q I

—_———

25- — " lg-g ) 0-g,) —

0 e (ZZINI-Z) /
20 : i ,:

-

4

— -

0 62 04 06 08 10

0-189,

FiG. 4. Profiles for case 5: a, = 0-75, m = 0-189,

T, = 400°K, T, = 1000°K, ¢ = 10.

accurate transport properties in that the effects
of altered wall values Z,, and g,, are minimized.
Furthermore, it should be appreciated that the
presentation of the profiles has been made in
terms of the transformed variable 5, and that in
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the physical plane, i.e. in terms of y, greater

alterations can occur.

In Figs. 6 and 7 there are compared respec-
tively values of the heat transfer parameter N
and the wall enthalpy g, as predicted by the
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solutions with accurate and approximate trans-
port properties.

Examination of Table 1 and Figs. 6 and 7
indicates that significant alterations in wall
values, e.g. in heat transfer and in g, result
from accurate descriptions of the transport
properties. The present errors in heat transfer
tend to increase with «, and T, but are relatively
insensitive to {; e.g. for case 2 errors in heat
transfer, as indicated by Np, of from 5 to 60 per
cent arise because of use of approximate
transport properties, whereas for case 8 the
maximum error is less than 25 per cent. It
would thus appear from these results that
the frequently stated relative insensitivity of
boundary-layer characteristics to transport
properties may not be valid.

Examinations of the profiles of the flow
parameters as predicted by the accurate and
approximate transport representations, and as
shown in Figs. 1-5, indicate that differences do
arise therefrom. The significance of these altera-
tions would depend, of course, on the purpose
of the analysis. However, in experiments con-
cerned with boundary layers involving surface
reactions the present results imply that com-
parison should be made with analyses based on
reasonably accurate descriptions of the transport
properties.
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It is interesting to note that none of the
approximate methods appears to be significantly
more accurate than another, although a slight
preference seems to prevail for the approximation
C variable and ¢ = S, = 1; this is not the case
usually treated since the velocity field is not
given by the Blasius solution.*

8. CONCLUSIONS

There has been considered the Ilaminar
boundary layer of a dissociating gas with sur-
face reaction and with no gas phase reaction.
Simplifying assumptions with respect to the
chemical properties of the surface have been
employed so as to yield a boundary layer of the
similar type. Of primary interest is the examina-
tion of the effect of the transport properties of
the gas on the heat transfer to the surface and on
the profiles of the flow quantities within the
boundary layer. The results for a reasonably
accurate description of the viscosity, conductivity
and diffusivity of a dissociating gas applied to

* As a result of a careful examination of an earlier
version of this paper, Dr. D. E. Rosner has informed the
second author that he is able to provide a simple correc-
tion to the heat-transfer coefficient N» for the effects of
o, S; # 1 but not for variable C and thus that *“. . . the
approximate method which does least violence to the pp
variation will be most accurate . . .”.
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conditions representing flight at high altitudes
are compared to those obtained from frequently
employed, approximate descriptions of the
transport properties. An iterative method of
solution of the non-linear describing equations is
presented; experience therewith for the problem
under consideration indicates that rapid con-
vergence is achieved.

Comparison of the heat transfer, of the surface
properties, and of the profiles as obtained by
the accurate and approximate representations
of the transport properties indicates that under
the assumed conditions and according to the
analysis here there can occur changes in the
surface heat transfer of up to 60 per cent and in
the profiles of the flow variables of some
significance.
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Résumé—On a conduit une étude de la modification du transport de chaleur pariétal et des profils des
variables de D’écoulement associée 4 plusieurs descriptions des propriétés de transport d’un gaz
dissocié. Une couche limite du type en similitude est considérée; une description raisonnablement
précise de la viscosité, de la conductivité et de la diffusivité d’un mélange d’atomes et de molécules
est utilisée en méme temps que plusieurs descriptions approchées qui ont été employées dans le passé.
Des exemples numériques correspondant 3 un vol hypersonique & grande altitude sont considérés et
indiquent que des modifications du transport de chaleur allant jusqu’a 60%; et d’importance possible
pour les profils peuvent se produire selon la description employée des propriétés de transport.

Zusammenfassung—Diese Arbeit befasst sich mit der Anderung des Wirmeiibergangs an Oberflichen
und der Profile der Stromungsvariablen in Verbindung mit einigen Beschreibungen der Transport-
eigenschaften eines dissoziierenden Gases. Es wird eine Grenzschicht von gleicher Art betrachtet.
Fiir die Zihigkeit, die Leit- und Diffundierfihigkeit eines Gemisches aus Atomen und Molekiilen
werden geniigend genaue Angaben verwendet neben mehreren Niherungsangaben, die friiher in
Gebrauch waren. Numerische Beispiele, die einem Hyperschallflug in grosssen Hohen entsprechen,
werden in Betracht gezogen und zeigen, dass unter Umstinden bedeutende Anderungen des Wirme-
iibergangs von bis zu 60% und der Profile auftreten kdnnen, die von den Angaben iiber die ver-
wendeten Transporteigenschaften abhingen.

AnrHoTanuAa—IIpoBeleHO HCCIeNIOBAHNMEe N3MEHEHMH OBEPXHOCTHOTO TEIIOO0MEHa M IpO-
Puselt DapaMeTpOB IIOTOKA B BABICMOCHTH OT HCIIOJIb3YEMBX BHparKeHul 1A KoaGuunenTon
HepeHoca AMCCONMMUPYIOIIEro rasa. PaccMOTpeH IMOTPAHWYHHIL CJIO# ABTOMOZEJBLHOTO THIA.
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HUcnosapsyeTcs [OCTATOUHO TOUHOE BHpasKeHue Ko PQHIIIEHTOR BASKOCTI, TeIIIONPOBOFHOCTH

u puddysun OiA cMecell aTOMOB M MOJEKYI HADPAZY ¢ IPHOIIKEHHHIMU OMUCAHMAMY, NPH-

MEHABIIMMHCA paHee. PaccMOTPeHH UMCIEHHBIE IPUMEPH], COOTBETCTBYIOINIHE YCJIOBHAM

THIEP3BYKOBOrO mMOJeTa Ha OONBIIOR BHICOTE. YKABHBAECTA, UTO BOSMOMKHEL PA3NMYHEIE

3HAUeHNA TemmoobmeHa Ao 60%, M cymiecTBeHHHe Pa3NHYMA NPOPUIIell B 3aBUCHMOCTH OT
NCNONIb3YEMBIX BHpameHuit rosddnuentos mepeHoca.



